wireless charging of a medical implant
What are the mechanisms behind cell functioning and…
Read MoreFor medical implants it is important that batteries are powered efficiently. Sensors in the implants often require power to read out data. Therefore, batteries in the implants must be charged using a charging coil. Using COMSOL Multiphysics, the body heating due to the charging was calculated. The energy dissipation in the skin was calculated to be an order of magnitude below the maximum allowed value. The charging coil was experimentally validated by our multidisciplinary colleagues within the Demcon Group.
Performing experimental research can be very time consuming and resourceful. Especially when one wants to perform a sensitivity analysis which requires many experiments with slightly deviating operational parameters. We performed a sensitivity analysis for a steel belt cooler. Several cases were simulated, with different values for several parameters: the velocity of the air moving over the belt, the initial temperature of the air moving over the belt and the wall temperature of the moving belt. The average temperature of a pastille just before it left the belt, was evaluated and used to compare the different scenarios.
The Kryoz is an extremely complicated piece of equipment. If anything is slightly off with one of the dozens of components, or the procedure is not properly followed, the end product will not work. That would make reverse engineering quite a challenge. To anyone who would like to try, I would say: good luck.